Domestic seaborne distribution systems in Asia

Ad Ligthart Cement Distribution Consultants

26 June 2013

Contents of presentation

- Introduction
- Overview of Asian cement and clinker trade and domestic distribution
- A brief overview of seaborne domestic distribution systems in Asia
- The economic factors behind seaborne distribution systems
- Logistical aspects of seaborne distribution systems

Cement Distribution Consultants an introduction

Market knowledge	Consulting	Project / interim management
• The global cement industry on Google Earth	Logistical, economical and technical services	Realising and managing projects
• Large database on waterside cement plants, waterside grinding plants and terminals	 Feasibility studies of complete logistical chains for trade and distribution Shipping solutions 	 Examples Redevelopment of large "brown field" bulk terminal
• 30 Years experience	 Development of new facilities Terminal and equipment design 	- Temporary cement and fly ash import project for construction of large concrete dam

CONSULTANTS

Cement Distribution Consultants - an introduction

The cement industry on Google Earth

Cement Distribution Consultants has a large database on waterside plants , grinding facilities, terminals and self discharging ships which is the basis for market studies, shipping studies, etc., etc.

Overview of seaborne Asian cement and clinker trade and distribution

An overview of Asian seaborne distribution systems Indonesia Japan Korea Taiwan Vietnam Philippines

India

<u>Indonesia</u>

	Production	52,5	mt
	Import by water	2,5	mt
	Domestic distribution	13	mt
	by water in bulk + 13 bags!!!	mt in	
ŀ	Total waterborne (bulk	i) 15,5	mt
	(30 % of production)		
A Start	7 Coastal cement plant	S	
N H IT	Approx. 34 coastal terr	ninals	
	42 Self discharging vess	els	

Areas with coastal cement plants

Cement and clinker trade flows in Asia

- Very large expansion of seaborne domestic distribution
- > Large fleet of new self discharging ships required

<u>Japan</u>

Production	59 n	nt
Exports	10.7	mt
Domestic distribution	22	mt
by water		

Total 32,7 mt (55% of production) 18 Coastal cement plants Approx. 220 coastal terminals 76 Self discharging vessels

Area with most

Cement and clinker trade flows in Asia

Area with most coastal cement plants

South Korea

Production	48,9 mt
Exports by water	10,0 mt
Domestic distribution	9 ,0 mt
by water	
Total waterborne	19,0 mt
(39% of production)	
6 Coastal cement plants	
Approx. 18 coastal term	inals
34 Self discharging vessel	s of which
about 17 involved in exp	orts

Cement and clinker trade flows in Asia

Area with most coastal cement plants

<u>Taiwan</u>

Production	15,8	mt
Exports by water	5,0	mt
Domestic distribution	5,2	mt
by water		
Total waterborne	10,2	mt
(65% of production)		
5 Coastal cement plants		
Approx. 16 coastal terminals		
15 Self discharging vessels		

Cement and clinker trade flows in Asia

All figures 2012

47

mt

7,7 mt

10,2 mt

17,9 mt

Philippines

Production	17,7 mt
Exports by sea	0,3 mt
Domestic distribution	2,4 mt
by sea	
Total waterborne	2,7 mt
(15% of production)	
7 Coastal cement plants	
Approx. 7 coastal terminals	
4 Self discharging vessels	

Area with most coastal cement plants

Cement and clinker trade flows in Asia

Area with most coastal cement plants

Area with most coastal grinding plants

CEMENT DISTRIBUTION CONSULTANTS Cement and clinker trade flows in Asia

<u>Malaysia</u>

Production	20,5 mt
Exports by water	2,7 mt
Domestic distributio	on I,Imt
by water	
Total waterborne	3,8 mt
(18,5% of production	n)
l Coastal cement pla	ant
4 Coastal terminals	
2 Self discharging ve	ssels
Substantial clinker in	nports
The only cement pla	nt on the water
is Lafarge Langkawi v	which is an
important export ba	se to the Indiar
Ocean.	All figures 2012

<u>India</u>

Production	246,7 mt
Exports by water	3,5 mt
Domestic distribution	5 mt
by water	
Total waterborne	8,5 mt
(3,5% of production)	
4 Coastal cement plant	S
Approx. 7 coastal term	inals
14 Self discharging vess	els

Cement and clinker trade flows in Asia

Economical mechanisms behind seaborne trade and distribution

- Maximizing plant utilisation
- Cost of transportation effects
- Effects of vertical integration
- GDP/Cement consumption curve
- > Acceleration factor of cement consumption
- Trade fluctuation mechanism
- Price maker or price follower

Assumptions:

- Plant capacity 1,5 mtpa
- Ex works price domestic € 85
- Ex works price exports € 40

Example I

Domestic sales	1.050.000 tons (70%)
Export sales	0
Income domestic sales	89.250.000
Income export sales	0
Total income	89.250.000
Production costs (@70%)	<u>33.316.500</u>

55.933.500

Production cost per ton (Energy, labour, maintenance, raw materials)

Plant utilisation factor

Example only!

Example 2

Domestic sales Export sales Fotal sales	1.050.000 tons (70%) <u>300.000 tons (20%)</u> 1.350.000 tons (90%)	
ncome domestic sales	89.250.00	00
ncome export sales	12.000.00	00
Total income	101.250.0	0(
Production costs (@90%)	38.353.50	00
Contribution to financial cos	ts and profit 62.896.50	00

Euro 36

Maximizing plant utilisation

- Cement sold in other markets than the local one has to have a lower Ex Works price to allow for the higher cost of transportation.
- The margin on the additional cement sold into other markets provides and additional contribution which largely goes directly to the bottom line.
- The key benefit of the additional cement sold into other markets is the higher utilisation of the plant resulting in a substantial lower production cost per ton <u>over the entire production of the plant</u>!

Maximizing plant utilisation

A single plant supplying a single local market at first glance seems to be in the most profitable situation.

However, this is only the case when this plant can reach (near) full utilisation rates. When company A can only sell 70% of its capacity in its home market and has no means to reach other markets it is far worse off than company B or C that might be able to sell 70% in their home markets plus 20% to other markets, even at a reduced ex works price.

Cost of transportation aspects

Vertical integration of the cement industry into the ready mix concrete products, sand and aggregate industries has the effect that for cement supply the market share and pricing become more stable.

This allows for long-term investments in distribution facilities and transport methods and with that a lower distribution cost per ton.

However, vertical integration means that independent ready mix and concrete products companies have to buy their cement from their competitors and gives a strong incentive for them to realize their own cement supply by imports

Effects of vertical integration

GDP related to cement consumption

Acceleration factor of cement consumption

Trade fluctuation mechanism

A price maker is the company that has the lowest combination of production, transport and financial costs in its key markets and as such can determine the price in these markets.

A price follower does not have this advantage and therefore will not start a price war and will follow the pricing of its competitor

Price maker or Price follower

Logistics of seaborne distribution systems

- Basics
- Closed versus open systems
- Growing distribution systems
- > Possibilities and limitations of self discharging cement carriers
- > New self discharging cement carriers

Logistical issues

- Shipping is the determining cost factor in seaborne trade and distribution
- Ship size is determined by transportation distance (but can be influenced by the shipping market situation and available port facilities)
- The ship size and shipping irregularity determine the required buffer storage in loading port facilities and discharge terminals
- The ship size and type determined the required size and type of the loading and discharge systems

Basics

Logistical issues

Self discharging cement carrier with on-board loading and discharge systems

- All weather, highly efficient loading and discharge
- Does not necessarily need a dock, just dolphins and a pipeline to shore
- Cannot take return cargo. Therefore best on short term medium distance routes
- On a specific route it has a fixed annual tonnage capacity. If this tonnage is lower then the vessel is idle part of the time. If the tonnage is higher a different solution has to be found.
- Very regular scheduling possible.
- Can deliver cargo at multiple terminals in one voyage

General bulk carrier requiring specialist on shore loading and discharge systems

- Loading and discharge will have inefficiencies and will take more time. Rain delays can occur
- Needs a dock. Docks are usually shared and so delays can occur because of other operations
- Can take return cargo or go to different trade routes. Therefore best for long and medium distance routes.
- Shipping by general bulk carriers can be adapted much more easily to changing market conditions.
- More irregular scheduling. Requires larger buffer storages.

Shipping methods

Open system: With possibilities to import and export cement and clinker

Imports and exports require larger ships than distribution systems and creating and open system means creating the loading and discharge facilities for these larger ships

Closed versus open system

The self discharging cement carrier is the key to successful and economic seaborne domestic distribution systems

Small ships versus larger ships

Second hand vessel

- "Immediate availability"
- Lower capital cost
- Availability can be limited
 - Right size not available
 - Right type not available
- High operating cost

New fuel efficient ships versus second hand older vessels

New building

- Long delivery time
- Higher capital cost
- Optimal size
- Optimal configuration
- High fuel efficiency
- Lower maintenance

General developments in Shipping

- IFO (intermediate Fuel Oil) is becoming less available and increased faster in price than other fuels.
- Stricter environmental regulations (Limiting high sulphur fuels)
- Stricter safety regulations (movement to double hull bulk carriers)

New self discharging cement carriers

Ship design

Fuel efficient

- longer ships with less width
- 15-20% lower fuel cost

Safety

- Double hull
- Long Narrow holds!
- Stability is a much bigger issue

Environmental

• Possibility to switch to LNG

Cement handling system

- Integrated tank top of double bottom / fluidising floor
- Fluidising floor as low as possible to increase hold volume and stability
- Changes required to layout and system design of cement handling systems

Self discharging ships

Optimizing seaborne domestic distribution systems

- Long term approach required
- Move to larger self discharging cement carriers
 - Visit multiple terminals in one voyage
 - Offshore discharge possibility to allow for larger vessels (floating pipeline)
- Move to new building cement carriers with low operating costs and optimally sized and fitted
- Consider clinker distribution and grinding plant for high volume routes
- Build flexibility in the system to cope with change market conditions, multiple products.

To optimize seaborne domestic distribution system it is required that all possibilities can be compare and evaluated.

This is only possible by building a business model of the complete network combining logistics and economics

THANK YOU

adligthart@cementdistribution.com www.cementdistribution.com

