Intercem Workshops CEMENT TERMINAL STORAGE

Presented by
Tim Harvey, P.E.
River Consulting, LLC

Columbus, Ohio

6-7 December 2006

Tremont House, Galveston, Texas

Cement Storage Outline

- Cement Storage Types
 - Common storage vessels at terminals
- Cement Storage Considerations
 - Factors that influence storage choice
- Storage Type Comparisons
 - Pros and Cons for the various types
- Case Study
 - Houston Cement
- Conclusion

Cement Storage Types

- Concrete Domes
- Concrete Silos
- Steel Tanks
- Warehouse Buildings
- Floating Storage Vessels

Cement Storage Considerations

- Required Storage Volume
 - Ship Size Availability
 - Ship Draft Requirements
 - Loadout and Sales Schedule
- Real Estate Influence
 - Land Value and availability
 - Rail and roadway availability
 - Topography and elevation to structures

Cement Storage Considerations

- Product or Products Stored
 - Number of products
 - Volume of Each
 - Contamination
- Foundation/Geotechnical Issues
 - Terminals often at ports, rivers, reclaimed or alluvial soils
 - Deep foundations often required
 - Seismic factors and risk
- Cost and Schedule Issues
 - Capital costs
 - Operating costs
 - Urgency of Construction

Cement Storage Considerations

- Equipment Influence
 - Ship Unloader rate
 - Cement Transfer Rate
 - Pneumatic System Volume/Pressure
- Loadout/Shipping Systems
 - Rail and/or truck loadout systems and rates
 - Loadout bin volume
- Construction Issues
 - Union versus non-union construction
 - Labor availability
 - Material availability

- Storage Volume 20,000 to 100,000 Metric Tons
- Reinforced Shotcrete on Air Form Construction
- Ship to Dome to Truck terminal shown

- Hemispherical Shape or Cylinder with Top Hemisphere
- Reclaim typically by interior screw auger or aerated floor.
- Rail and Ship to Dome to Truck and Rail terminal shown.

- Historically cost effective construction
- Low ratio of dead load to live load

- Low profile, small seismic influence
- California Terminal shown

- Typically limited to one product
- Reclaim systems are typically mechanically intensive with significant
 - intensive with significant power demand
- Independent loadout Bins typically required.
- Ship to dome to truck and barge terminal shown.

- Typically Cylindrical, but Various shapes and combinations are possible
- Slip form or jump
 Form Construction
- Reinforced or prestressed concrete construction

- Conical Hoppers typical for flow with aeration.
- Elevated Storage for direct loadout

 Simple cylinders and multi-cell construction

- Site specific construction
 - Adaptable, but.....
 - At a cost
- Small footprint
- Flexible storage for Multiple products and transfer possibilities

- Historically more costly (\$ per ton) than others
- Large ratio of dead load to live load, adds to foundation costs
- Heavy, often tall and slender – seismic influence

Steel Tanks

- Cylindrical Shapes
- Welded or Bolted construction
- PrefabricatedComponents
- 5,000 and 2,000 metric ton bins shown

Steel Tanks

- Small size limits use at large import terminals
- Interior pressure and roof load limitations
- 1500 metric ton bins shown here under construction

- Relatively low capital costs
- Multiple building shell construction possibilities

Low unit soil bearing pressures

- Internal compartments possible
- Rapid construction possibilities
- Possible use/conversion of existing structures
- Independent loadout required

FLAT STURMOE WAREHOUSE PLAN COMM

- Filling and distribution equipment can be as simple or complex as desired
- Reclaim equipment can be as simple or complex as desired.
- Reclaim typically accomplished using a combination of mobile and fixed equipment
- Limited cement pile height for worker safety
- Dust and visibility
- Large footprint required for large storage volumes

Floating Storage

- Ships and Barges
- Limited on-shore facilities required
- Can be relocated as needs change or facilities expand
- Aerated and mechanical reclaim
- Off-site construction advantages

Floating Storage

- Typically small storage volumes
- Large energy and maintenance costs
- Independent loadout facilities required
- Limited use today

Case Study

- 100,000 metric tons of cement storage required
- Dome and Silo Storage considered
- Three truck loadout lanes required, with future rail and truck loadouts desired
- Deep Foundations required for domes or silos
- Large land area available
- Design-build project methodology. River Consulting and Continental Construction of Memphis TN joined to pursue the project.

Preliminary Dome Scheme

Preliminary Silo Scheme

Final Site Plan

Case Study Considerations

- Cement Storage Types
 - Domes with screw auger reclaimers and Independent loadout bins
 - Silo Group with elevated conical hoppers and direct truck loadout
- Storage Comparisons
 - Both schemes developed by design-build team
 - Mechanical equipment layout and pricing developed
 - Electrical equipment and demands developed
 - Structures and foundations estimated

Case Study Considerations

Conclusions

- The silo scheme total project cost was greater than the total project cost of the dome scheme by less than 5%.
- The dome scheme electrical power demand was significantly greater than the silo scheme over the expected life of the facility.

Outcome

- The silo scheme was presented to the Owner for consideration
- The Owner elected to use the silo scheme, citing the flexibility advantages of the group of six silos with a relatively small additional cost.

Project Construction View

Project Construction View

Project Construction View

Cement Storage Conclusions

- There is no one "right" answer. For the case study presented, the flexibility of the silo option was worth the increased cost to the owner.
- Storage choice depends upon many factors. Do not jump to a conclusion as to the preferable type for your terminal.
- Construction technologies and costs change more quickly than we sometimes think. Your "best" choice ten years ago may not be your optimum choice today.
- Consider both your short term and long term costs and needs.
 Where will your business be in five years? In twenty years?
- We have yet to have an owner tell us that they have too much storage!

Thank you for your attention.

Enjoy the rest of the conference.

Cement Terminal Storage
Tim Harvey, P.E.
River Consulting, LLC

Columbus, Ohio

6-7 December 2006

Tremont House, Galveston, Texas